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Abstract

In this work, we present a general compositional vector framework for transition-
based dependency parsing. The ability to use transition-based algorithms allows
for the application of vector composition to a large set of languages where only
dependency treebanks are available, as well as handling linguistic phenomena
such as non-projectivities which pose problems for previously proposed methods.
We introduce the concept of a Transition Directed Acyclic Graph that allows us to
apply Recursive Neural Networks for parsing with existing transition-based algo-
rithms. Our framework captures semantic relatedness between phrases similarly
to a constituency-based counterpart from the literature, for example predicting that
“a financial crisis”, “a cash crunch” and “a bear market” are semantically similar.
Currently, a parser based on our framework is capable of achieving 86.25% in Un-
labelled Attachment Score for a well-established dependency dataset using only
word representations as input, falling less than 2% points short of a previously
proposed comparable feature-based model.

1 Introduction

Word representations induced using a variety of methods such as unsupervised slot-filling-style tasks
(Collobert and Weston, 2008) or co-occurrence statistics (Turney and Pantel, 2010) are becoming a
standard resource within the natural language processing community and it has been demonstrated
that these representations can boost performance for tasks such as dependency parsing (Koo et al.,
2008), named entity recognition and syntactic chunking (Turian et al., 2010).

Recently, a number of studies have used word representations to compose representations of phrases.
Approaches for this task have ranged from manually defining composing operators (Mitchell and
Lapata, 2008), learning linear composition functions (Baroni and Zamparelli, 2010) to learning non-
linear composition functions (Socher et al., 2010), the last of which is the focus of this work. These
composed representations have proven to be useful for tasks such as sentiment analysis (Socher
et al., 2011) and compound similarity (Hermann and Blunsom, 2013).

While previous work has demonstrated how to learn non-linear composition functions for com-
pounds and phrases in a constituency tree setting, there is a plethora of languages for which only
dependency treebanks are available (Hajič et al., 2009; Haverinen et al., 2010). In this work we intro-
duce a compositional vector framework for transition-based dependency parsing algorithms that can
capture semantic relations between phrases. Quantitatively, at the current stage a parser based on our
framework can achieve an Unlabelled Attachment Score (UAS) of 86.25% for dependency parsing
on the CoNLL 2008 Shared Task Data Set using without using any manually crafted features.

∗Currently at the University of Tokyo.
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(b) Croatian (“I ate good sashimi”).

Figure 1: Example sentences with labelled syntacto-semantic dependencies.

2 Dependency Parsing

The foundations for dependency grammars were laid down by Tesnière (1959), but it is only rela-
tively recently that dependency parsing has become a major field of study. This increase in attention
is partially due to community efforts such as the 2006 and 2007 CoNLL Shared Tasks (Buchholz
and Marsi, 2006; Nilsson et al., 2007), but also since the dependency grammar framework easily
lends itself to languages with free word order. As a result, annotated resources are readily available
for a diverse, large set of languages. A key difference between constituency parsing and dependency
parsing is in the unit that is considered when parsing. For constituency parsing words are composed
into constituents (phrases) that are recursively composed into more complex constituents until they
form a sentence, while dependency parsing establishes the relation between words.

Formally, a dependency graph G = {V,E} for a sentence S = {w1, . . . , w|S|} is a labelled directed
graph consisting of a set of vertices V , corresponding to words, and a set of labelled edges (arcs) E,
corresponding to the dependency relations. Each edge can be expressed as i

l→ j where i denotes
the dependent, l the dependency type and j the head. Figure 1 shows two sentences annotated with
dependency graphs. For the remainder of this work we will mainly consider unlabelled dependency
graphs since it will simplify the explanation of our framework. We will, however, briefly explain
how the framework can be extend to the labelled case.

Dependency parsing algorithms generally fall within two major classes; graph-based and transition-
based. Graph-based algorithms consider the complete set of possible dependency graphs and
transition-based algorithms iteratively construct the dependency graph by processing the sentence
sequentially.1 While they both have strengths and weaknesses, in this work we will only consider
transition-based algorithms, leaving parsing using compositional vectors for graph-based algorithms
as future work.

For our example sentences (Figure 1), the key difference between the English (Figure 1a) and Croa-
tian (Figure 1b) sentence is that the latter exhibits a crossing or non-projective edge.2 This phe-
nomenon can be handled for transition-based dependency parsing using approaches such as making
algorithmic changes (Covington, 2001) or applying pre/post-processing heuristics to attempt to re-
cover non-projective edges (Nivre and Nilsson, 2005). As the latter can trivially be done for any
projective algorithm we will only demonstrate how our framework applies to a non-projective algo-
rithmic variant.

3 Parsing Using Vector Composition

In this section we review a previously proposed model that uses vector composition for con-
stituency parsing, introduce our framework for applying Recursive Neural Network (RNN) models
to transition-based dependency parsing and then demonstrate how it can be applied to three previ-
ously proposed transition-based algorithms.

1 For a thorough formal introduction to transition-based algorithms we refer the reader to Nivre (2008).
2 Our use of Croatian is primarily motivated by the need for a plausible minimal non-projective example.
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Figure 2: Transition DAGs for two transition-based parsing algorithms for our English example
sentence (Figure 1a). The variables correspond to those in Tables 1 and 2 respectively.

Transition Stack Buffer Arcs Compositions

[ ROOTw0 ] [ Iw1 , atew2 , . . . ]
t0 Shift⇒ [ ROOTw0

, Iw1
] [ atew2

, sashimiw3
]

t1 Left-Arc⇒ [ ROOTw0
] [ atew2

, sashimiw3
] I→ ate c0 = p([a1; a2])

t2 Shift⇒ [ ROOTw0 , atew2 ] [ sashimiw3 ]
t3 Right-Arc⇒ [ ROOTw0 ] [ atew2 ] sashimi→ ate c1 = p([c0; a3])
t4 Right-Arc⇒ [ ] [ ROOTw0

] ate→ ROOT c2 = p([a0; c1])

Table 1: Arc-Standard transitions and compositions for the sentence in Figure 1a.

3.1 Constituency Trees

Socher et al. (2010) introduced an RNN model that operates on a Directed Acyclic Graph3 (DAG)
and demonstrated how it can be used to compose phrasal representations in a constituency pars-
ing framework. Formally, the model uses a single composition matrix WC ∈ Rd×Pd where P is
the number of the parents at each non-source vertex, d is the dimensionality and a representation
ai ∈ Rd is assigned to each word in a sentence. The algorithm then composes the representations
by performing a topological traversal,4 applying the composition matrix and a non-linearity f to the
concatenated representation of the parents of each vertex p = f(WC [p0; . . . ; pP ]) ∈ Rd resulting
in a representation of the same dimensionality as its parents. The authors performed structured pre-
diction of a binary constituency parse tree in a greedy fashion by scoring whether or not an adjacent
pair of representations should be composed. Using their RNN model they demonstrated that it could
achieve similar performance as a well-established feature-based constituency parser implementation
and qualitatively showed that the resulting representations could be used to find semantically similar,
yet syntactically different, phrases.

3.2 Dependency Trees

While the RNN model works well for constituency trees, it is conceptually difficult to apply it to
dependency trees due to the core assumption of an RNN that all non-source vertices have an equal
number of parents. For example, in Figure 1a the “ate” vertex has two parents while its child has
one, making the use of a single composition matrix impossible without making major modifications
to the model. Furthermore, in order to parse the sentence in Figure 1b we need an algorithm and
grammar formalism capable of handling non-projectivities, which rules out the approach proposed
by Socher et al. (2010).

Fortunately, these problems can be addressed if we are able to cast the vector composition as a
transition-based dependency parsing problem. Transition-based algorithms employs a stack and a
buffer that are jointly referred to as a configuration. A configuration is initialised by putting all the

3 Since RNNs in their most general formulation operates on a DAG we use DAG terminology rather than the
mixed DAG/tree terminology used by Socher et al. (2010). This leads to a few changes such as roots becoming
sinks, leaves sources and the parent/child relationships being inverted.

4 Parent vertices are visited before their children.
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Figure 3: Transition DAG for the Swp-Lazy parsing algorithm for our Croatian example sentence
(Figure 1b). The variables correspond to those in Table 3.

words of the sentence in the buffer and a dummy ROOT word w0 on the stack. The algorithm then
iteratively predicts a transition for the current configuration, manipulates the stack/buffer and create
edges until it ends up in a terminating state.

Dependency parsing transitions can be categorised as either creating a dependency edge or simply
manipulating the current configuration without creating an edge. The former are in a sense compo-
sitional since they attach a dependent to its head and establish their syntacto-semantic relationship.
Using this distinction, we introduce the concept of a Transition DAG that is constructed when pars-
ing. To predict the next transition, we apply the composition matrix WC to the top-most elements
of the stack and buffer to create a composed representation that we feed to a SoftMax layer that will
predict the next transition. Intuitively, this determines whether two words are in a head/dependent
relationship. By feeding the composed representation to an additional SoftMax layer we could also
predict the dependency type. Repeating this iterative process produces phrasal representations while
jointly parsing the sentence. We illustrate this for our example sentences (Figure 1) and the two
well-established projective algorithms Arc-Standard and Arc-Eager as well as for the non-projective
Swp-Lazy (Nivre et al., 2009) algorithm in Tables 1 to 3 and Figures 2 and 3.

Informally, the key difference between the Arc-Standard and Arc-Eager algorithms is that the former
ensures that all dependents have been attached to a word before it is attached to its head, while the
latter create edges eagerly by attaching a dependent to its head as early as possible in the parsing
process. In practice, these two algorithms tend to achieve similar performance. Swp-Lazy is an
extension to the Arc-Standard algorithm that allows for the re-ordering of words on the stack/buffer
using a Swap transition to enable the processing of non-projective edges.

As Arc-Standard is arguably the most canonical of the three algorithms, we will walk through the
steps to parse our English example sentence and create its transition DAG (Figure 2a) using oracle
transitions (Table 1). From our initial configuration we determine that “I” is not to be attached to
“ROOT” by predicting Shift t0. As “I” is to be attached to the verb “ate” we predict Left-Arc t1 and
assign the composition of the head and the dependent as the new representation c0 (“I ate”). Since
the verb does not yet have all of its dependents attached we predict Shift t2 instead of attaching the
verb to “ROOT”. “sashimi” is then assigned as the dependent of “ate” with a Right-Arc t3 transition
and we compose c1 (“I ate sashimi”). Now that all dependents have been attached to the verb we
attach it to “ROOT” using Right-Arc t4 and arrive at a terminating state.

Since phrases and the transitions used to compose them are contextual in nature, we make one exten-
sion to our initial framework by allowing it to observe the top h representations on the stack/buffer
and refer to this as the horizon.5 Additionally, there is a need to represent the ROOT vertex and an
empty stack/buffer to ensure that there are inputs for the composition matrix for all possible config-
urations and we simply introduce dummy vertices for each of the three cases and update their vector
representations jointly with the word representations.

5 This is similar to a context-aware RNN, but our context consists of representations from the stack/buffer
rather than from neighbouring of words.
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Transition Stack Buffer Arcs Compositions

[ ROOTw0
] [ Iw1

, atew2
, . . . ]

t0 Shift⇒ [ ROOTw0 , Iw1 ] [ atew2 , sashimiw3 ]
t1 Left-Arc⇒ [ ROOTw0

] [ atew2
, sashimiw3

] I→ ate c0 = p([a1; a2])
t2 Right-Arc⇒ [ ROOTw0

, atew2
] [ sashimiw3

] ate→ ROOT c1 = p([a0; c0])
t3 Right-Arc⇒ [ . . . , atew2 , sashimiw3 ] [ ] sashimi→ ate c2 = p([c1; a3])

Table 2: Arc-Eager transitions and compositions for the sentence in Figure 1a.

Transition Stack Buffer Arcs Compositions

[ ROOTw0
] [ Dobarw1

, samw2
, . . . ]

t0 Shift⇒ [ ROOTw0 , Dobarw1 ] [ samw2 , sashimiw3 , . . . ]
t1 Swap⇒ [ ROOTw0

] [ samw2
, Dobarw1

, . . . ]
t2 Shift⇒ [ ROOTw0

, samw2
] [ Dobarw1

, sashimiw3
, . . . ]

t3 Shift⇒ [ . . . , samw2
, Dobarw1

] [ sashimiw3
, pajeow4

]
t4 Left-Arc⇒ [ ROOTw0 , samw2 ] [ sashimiw3 , pajeow4 ] Dobar→ sashimi c0 = p([a1; a3])
t5 Shift⇒ [ . . . , samw2

, sashimiw3
] [ pajeow4

]
t6 Left-Arc⇒ [ ROOTw0

, samw2
] [ pajeow4

] sashimi→ pojeo c1 = p([c0; a4])
t7 Left-Arc⇒ [ ROOTw0 ] [ pajeow4 ] sam→ pojeo c2 = p([a2; c1])
t8 Right-Arc⇒ [ ] [ ROOTw0 ] pojeo→ ROOT c3 = p([a0; c2])

Table 3: Swp-Lazy transitions and compositions for the sentence in Figure 1b.

4 Experiments

In this section we describe our training strategies and preliminary experiments for dependency pars-
ing and phrasal vector composition for a model created by applying our compositional vector frame-
work to a transition-based algorithm.

4.1 Model and Training

As a first investigation into whether our framework is suitable for constructing models for depen-
dency parsing and vector composition, we create a simple model using the Arc-Standard algorithm
that we used for our example in the previous section. We limit ourselves to using global weight up-
dates and apply a greedy search strategy at test time by selecting the most likely transition according
to the SoftMax layer for each iteration.

We generate gold transition DAGs, such as the one in Figure 2a, for each sentence in the training
data using oracle transitions. Given the gold transition DAGs we can then train our model using
the same back-propagation through structure (Goller and Kuchler, 1996) strategy that was originally
proposed for RNNs6 by minimising the cross-entropy loss for the transition actions, propagating the
errors from the sinks to the sources.

As initial word representation we use the non-scaled, unnormalised 200-dimensional vectors pre-
trained vectors provided by Turian et al. (2010). When initialising the composition weight matrix
WC we use a strategy similar to Socher et al. (2013) and add a constant to the diagonal elements
of each block sub-matrix of WC . This factor depends on the distance to the top of the stack/buffer
of the representation being affected by the block sub-matrix and is defined as 1

i+2 where i is is the
distance to the top of stack/buffer. This leads to gradually less initial influence for distant repre-
sentations on the stack/buffer ([ 12 ,

1
3 , . . .]). All other weights, including the representations for the

empty-stack/buffer and ROOT, are initialised using the normalised initialisation heuristic proposed
by Glorot and Bengio (2010).

To minimise our loss function we use mini-batches combined with the diagonal version of AdaGrad
(Duchi et al., 2011). AdaGrad is particularly helpful for infrequent words since it adapts the learning
rate for each parameter and provides larger updates for rare parameters. We tune our set of hyper-
parameters on a development set and for the final evaluation we use a batch size of 64, a learning rate
of 0.1 and apply a weight-decay regularisation of 10−4 for the composition matrix/SoftMax layer
and 10−6 for the word representations. Lastly, through preliminary experiments on the development
set we found that a horizon of three performed well.

6 Further RNN training details can be found in Socher et al. (2010).
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Model UAS

(1) This work 86.25%
(2) Surdeanu and Manning (2010) 88.06%
(3) Johansson and Nugues (2008) 92.45%

(a) UAS scores for a selection of models.

(a) a financial crisis
1st a cash crunch

2nd a bear market

(b) hammer out their own plan
1st work out their own compromise

2nd enact the cut this year

(c) to run their computerized trading strategies
1st to determine buy and sell orders

2nd to pick up more shares today

(d) from $ 142.7 million , or 78 cents a share
1st from $ 367.1 million , or $ 2.05 a share

2nd from the sale of its First Chicago Investment Advisors unit

(b) Nearest neighbour phrases.

Table 4: Results from our preliminary experiments.

4.2 Evaluation and Parameter Tuning

We evaluate our method quantitatively for dependency parsing on the Wall Street Journal portion of
the CoNLL 2008 Shared Task Data Set (Surdeanu et al., 2008) using the pre-defined training, devel-
opment and test splits. Development and hyper-parameter optimisation uses only the development
set so that the test set is only used to generate the final results. We use the official evaluation script
provided by the shared task organisers and UAS as our performance measure. The choice of UAS
as opposed to Labelled Attachment Score (LAS) is primarily motivated by the fact that we are still
developing and improving our framework. Since the particular transition-based algorithm we use as
the basis for our model is projective, we apply the MaltParser (Nivre et al., 2007) set of dependency
parsing tools to projectivise the dependency trees used for training.

To qualitatively evaluate the ability of our model to compose phrasal vector representations we
calculate the nearest neighbour phrases in the representation space. We do this by training our
model only on the training set, and then parse the sentences of the development set. This yields
representations for each phrase in the development set and we qualitatively analyse the sentences
which were deemed to be most similar according to our model using the cosine similarity. Since our
choice of evaluation corpus uses the same underlying texts as previous work, we should be able to
expect similar patterns for phrasal similarity.

5 Results and Analysis

In Table 4a we can find our performance in relation to both an Arc-Standard model7 (2) that uses
the same transition-based algorithm as our model and the best performing model from the shared
task (3). The performance of our model (1) is approaching that of the comparable feature-based
model, which is highly encouraging, especially since our model employs a pure feature-learning
strategy. However, as expected due to limiting the complexity of our model, it fails to achieve
results competitive with the state-of-the-art. But we need to keep in mind that we are yet to apply
more advanced training strategies and that other methods have access to manually crafted features
for both words and tree structures. In regards to computational complexity, our model can parse
slightly over 60 sentences per second on a single-core modern desktop computer.

In Table 4b we present four phrases and their two closest neighbours according to our model. For (a)
our model successfully captures that the phrases are similar since they describe times of financial
distress. (b) describe taking action as a group and (c) express trading with financial instruments.
However, (d) presents a case where describing the intuition behind the model output becomes diffi-
cult. The two first phrases appears to describe the distribution of dividends while the latter describes
the sale of a portion of a company. Potentially this could be due to some sense of profit being ex-
pressed in all three phrases, but as with all qualitatively analysis it is best to be cautious and not to
draw far-reaching conclusions. Overall, we find that our model does indeed capture similarity com-
parable to what has qualitatively been observed for previous compositional vector parsing models.

7 Results from Surdeanu and Manning (2010), the original model publication pre-dates the corpus.
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An observation we made during development was that although Socher et al. (2010) used a frequency
cut-off and replaced infrequent words with “unknown” place holders and normalised digits, we
found no tangible performance benefits from this line of pre-processing. This finding is encouraging
since models such as ours without explicitly defined word surface features are expected to have
difficulties when encountering words that were not observed in the training data.

6 Future Work

While it is encouraging that our model can learn useful feature representations and perform as high
as 86.25% in UAS, it is justifiable to investigate the possibility of training strategies more advanced
than global updates with greedy search to strengthen our model (Huang et al., 2012). In fact, it may
turn out that doing so may improve the phrasal representations which would ideally be evaluated for
an extrinsic task. However, we leave such experimental analysis for future work.

Having established a base-line model that uses a unified representation of phrases, there are a number
of interesting possibilities for extensions to the parsing model itself that would not be possible using
previous approaches to transition-based parsing. One could, for example, try to eliminate the need
for a horizon cut-off by compressing the stack/buffer in a fashion similar to recursive auto-encoders
to allow for the model to learn how to observe contextual information rather than tuning a horizon
hyper-parameter.

As we rely on the word representations induced by Turian et al. (2010) for pre-training, it is mean-
ingful to ask to what extent this choice has an effect on parsing performance. While there have been
investigations into the effects of different algorithms and representation dimensionalities (Turian
et al., 2010) as well as corpus sizes (Stenetorp et al., 2012) for tasks such as named entity recogni-
tion, there has been no such analysis published for constituency or dependency parsing. Ideally, we
should therefore investigate alternative models, such as the recently introduced Skip-gram model
(Mikolov et al., 2013), to induce a range of alternative representations. Given the modularity of
neural network-based models it would then be straightforward to re-train the model to evaluate the
performance impact of the various representations.

Also, while our model is able to compose phrasal representations, we have observed that it has
difficulties creating representations for full sentences. This problem seems to be inherent in the
RNN model since it uses a single composition matrix. Thus, as we compose each representation
in a sentence the model will tend to “wash out” representations that were composed early on in the
parsing process. Ideally, the model would be informed about what information is the most salient,
but how to do this remains an open research question.

Lastly, and most encouraging, we have the possibility of evaluating our model for the 19 languages
from the CoNLL 2006 and 2007 Shared Tasks. One of the possible obstacles for this has already
been cleared with the recently published multilingual Polyglot word embeddings (Al-Rfou et al.,
2013), our work constitutes the second piece necessary for applying compositional vector parsing to
a much wider set of languages than was previously possible.

7 Conclusions

In this work we have introduced the first framework for applying vector composition to transition-
based parsing. By applying this framework to an existing transition-based algorithm we constructed
a model that is capable of learning to compose phrasal representations while jointly parsing depen-
dency tree structures, thus overcoming the weakness of previously proposed models that can only be
trained using constituency tree annotations. The resulting phrase representations are jointly learned
along with the weights to perform transition-based dependency parsing and are capable of capturing
semantic relatedness such as syntactically different phrases expressing financial trading. We have
also demonstrated that our model can learn to parse dependency structures without the need for
hand-crafted features, albeit as-of-yet falling short of performing on-par with existing state-of-the-
art feature-based models.
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Lluı́s Màrquez, Adam Meyers, Joakim Nivre, Sebastian Padó, Jan Štěpánek, et al. The CoNLL-
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