Bridging the Gap Between Scope-based and Event-based Negation/Speculation Annotations: A Bridge Not Too Far

Pontus Stenetorp^{*}, Sampo Pyysalo, Tomoko Ohta, Sophia Ananiadou and Jun'ichi Tsujii

http://pontus.stenetorp.se

<pontus@stenetorp.se>

Aizawa Laboratory University of Tokyo

 $13\mathrm{th}$ of July 2012

Outset

Outset

The Plan, Like So many Plans Before It

- Two separated research efforts
- A common goal
- Bringing them together in unification

CoNLL-2010 Shared Task Negation/Speculation Corpus

Background

- Used in the CoNLL-2010 Shared Task (Farkas et al. 2010)
- Linguistically motivated cue-and-scope annotations

BioNLP Shared Tasks on Event Extraction (EE)

Background

- Introduced by Kim et al. (2009, 2011)
- Includes negation/speculation as a subtask
- Task-oriented binary flag annotations

Annotations Styles: Poles Apart?

Related Work

Kilicoglu and Bergler (2010)

• EE to extract cue-and-scope negation/speculation spans

Vincze et al. (2011)

- Manual analysis of negation/speculation annotation differences on the Genia EE and CoNLL-2010 corpus
- Found a multitude of problematic cases
- No proposed system to solve these issues

This Work

In a Single Question

• Can the efforts on the CoNLL-2010 Shared Task benefit those on event extraction?

This Work

In a Single Question

• Can the efforts on the CoNLL-2010 Shared Task benefit those on event extraction?

Approach

- Leverage existing systems for EE and negation/speculation
- Not duplicate previous efforts, join them
- Design inspired by manual analysis
- Propose a general solution

Data and Manual Analysis

Name	Neg.	Events	Spec	. Events	Neg. Spans	Spec. Spans
EPI	103	(5.6%)	70	(3.8%)	561	1,032
GE	759	(7.4%)	623	(6.0%)	1,308	1,968
ID	69	(3.3%)	26	(1.2%)	415	817

Table: Data sets from the BioNLP 2011 Shared Task (Kim et al. 2011)

Manual Analysis

- Vincze et al. (2011) analysis of GE
- Domain expert analysis of EPI and ID train sets

Manual Analysis Results

Analysis	Label	Ratio in EPI	Ratio in ID
Coverage	Covered	15.03	56.52
	Not-covered	78.03	41.30
	Error-in-gold	6.94	2.18

Manual Analysis Results

Analysis	Label	Ratio in EPI	Ratio in ID
Coverage	Covered	15.03	56.52
	Not-covered	78.03	41.30
	Error-in-gold	6.94	2.18
Non-covered	Morphological	27.75	11.96
	Hypothesis	25.43	16.30
	Ellipsis	2.89	0.00
	Argument-only	1.16	10.87

System Architecture

External Components

Negation/Speculation

• CLiPS-NESP (Morante et al. 2010)

Event Extraction

- UTurku (Björne et al. 2011)
- UConcordia (Kilicoglu and Bergler 2011)
- FAUST (Riedel et al. 2011)

Heuristic: Baseline

First Experiment

Set-up

- Negation/speculation from upstream system
- Gold event annotations
- Standard F-measure score

Heuristic: Negation Results

Negation	EPI	GE	ID
Heuristic-Baseline	30.40	53.38	36.97

Heuristic: Negation Results

Negation	EPI	GE	ID
Heuristic-Baseline	30.40	53.38	36.97
Heuristic-Root	30.00	61.18	40.74

Heuristic: Speculation Results

Speculation	EPI	GE	ID
Heuristic-Baseline	8.75	23.58	11.61

Heuristic: Speculation Results

Speculation	EPI	GE	ID
Heuristic-Baseline	8.75	23.58	11.61
Heuristic-Root	7.59	31.03	13.90

Machine Learning

Motivation

- Easier to incorporate complex features
- Re-trainable for different systems

Machine Learning

Motivation

- Easier to incorporate complex features
- Re-trainable for different systems

Machine Learning Procedures

- Tune penalty parameter using 10-fold cross-validation
- Merged training data
- Only final experiments on test set
- L2-regularised L2-loss SVM model

Machine Learning: Features

Group	Feature	Example Value(s)
Heuristic	Covered Cue-Text Span-Tokens	Root/Non-root possibility One, possibility,

Machine Learning: Features

Group	Feature	Example Value(s)
Heuristic	Covered Cue-Text Span-Tokens	Root/Non-root possibility One, possibility,
Trigger	Trigger-Text Trigger-Prefixes	non-phosphorylated no, non, non-,

Machine Learning: Features

Group	Feature	Example Value(s)
Heuristic	Covered Cue-Text Span-Tokens	Root/Non-root possibility One, possibility,
Trigger	Trigger-Text Trigger-Prefixes	non-phosphorylated no, non, non-,
Contextual	Trigger-Preceding Trigger-Proceeding	is, that, \dots mfa1, expression, \dots

Negation	EPI	GE	ID
Heuristic-Baseline Heuristic-Root	$30.40 \\ 30.00$	$53.38 \\ 61.18$	$36.97 \\ 40.74$
Trigger	28.18	31.82	33.82

Negation	EPI	GE	ID
Heuristic-Baseline Heuristic-Root	$30.40 \\ 30.00$	$53.38 \\ 61.18$	$\begin{array}{c} 36.97\\ 40.74 \end{array}$
Trigger Heuristic+Trigger	$28.18 \\ 62.90$	$31.82 \\ 63.69$	$33.82 \\ 60.67$

Negation	EPI	GE	ID
Heuristic-Baseline Heuristic-Root	$30.40 \\ 30.00$	$53.38 \\ 61.18$	$\begin{array}{c} 36.97\\ 40.74 \end{array}$
Trigger Heuristic+Trigger Trigger+Context	$28.18 \\ 62.90 \\ 52.00$	$31.82 \\ 63.69 \\ 66.15$	$33.82 \\ 60.67 \\ 56.52$

Negation	EPI	GE	ID
Heuristic-Baseline Heuristic-Root	$30.40 \\ 30.00$	$53.38 \\ 61.18$	$36.97 \\ 40.74$
Trigger Heuristic+Trigger Trigger+Context	28.18 62.90 52.00	$31.82 \\ 63.69 \\ 66.15$	$33.82 \\ 60.67 \\ 56.52$
Heuristic+Trigger+Context	64.96	70.84	63.74

Speculation	EPI	GE	ID
Heuristic-Baseline Heuristic-Root	$8.75 \\ 7.59$	$23.58 \\ 31.03$	$\begin{array}{c} 11.61 \\ 13.90 \end{array}$
Trigger	0.93	15.24	17.19

Speculation	EPI	GE	ID
Heuristic-Baseline Heuristic-Root	$8.75 \\ 7.59$	$23.58 \\ 31.03$	$\begin{array}{c} 11.61 \\ 13.90 \end{array}$
Trigger Heuristic+Trigger	$0.93 \\ 5.88$	$15.24 \\ 29.00$	$17.19 \\ 28.57$

Speculation	EPI	GE	ID
Heuristic-Baseline Heuristic-Root	$8.75 \\ 7.59$	$23.58 \\ 31.03$	$\begin{array}{c} 11.61 \\ 13.90 \end{array}$
Trigger Heuristic+Trigger	$0.93 \\ 5.88$	$15.24 \\ 29.00$	$17.19 \\ 28.57$
Trigger+Context	52.43	35.37	33.96

Speculation	EPI	GE	ID
Heuristic-Baseline Heuristic-Root	$8.75 \\ 7.59$	$23.58 \\ 31.03$	$\begin{array}{c} 11.61 \\ 13.90 \end{array}$
Trigger	0.93	15.24	17.19
Heuristic+Trigger	5.88	29.00	28.57
Trigger+Context	52.43	35.37	33.96
Heuristic+Trigger+Context	49.50	40.00	37.21

Second Experiment: Enrichment

Set-up

- Negation/speculation from upstream system
- Event annotations from three upstream systems
- Global F-measure score
- EPI and ID data sets
- Heuristic+Trigger+Context model

Enrichment: Results

F-score	EPI	ID
UConcordia	27.88	44.21
UConcordia*	28.05	45.19

Enrichment: Results

F-score	EPI	ID
UConcordia	27.88	44.21
UConcordia*	28.05	45.19
UTurku	53.33	42.57
UTurku*	54.29	42.19

Enrichment: Results

F-score	EPI	ID
UConcordia	27.88	44.21
UConcordia*	28.05	45.19
UTurku	53.33	42.57
UTurku*	54.29	42.19
FAUST	35.03	55.59
FAUST*	37.21	55.88

Conclusions and Future Work

Conclusions

- Yes, we can bridge the gap!
- Introduced a practical way to do so
- Performed better than several existing EE systems
- Achieved state-of-the-art performance

Conclusions and Future Work

Conclusions

- Yes, we can bridge the gap!
- Introduced a practical way to do so
- Performed better than several existing EE systems
- Achieved state-of-the-art performance

Future Work

- Ways to eliviate hypothesis
- Other negation/speculation systems
- Use upstream confidence and/or integrate into EE system

Thank You for Your Attention

ご清聴ありがとうございました

Tack för er uppmärksamhet

Code: http://ninjin.github.com/eepura/ Slides: http://pontus.stenetorp.se/

Additional Negation Enrichment Results

Negation	EPI	GE	ID
UConcordia	26.51	25.88	22.92
UConcordia*	31.17	27.42	29.68
UTurku	18.60	31.15	32.91
UTurku*	45.53	27.33	32.10
FAUST*	39.18	28.25	35.00

Additional Speculation Enrichment Results

Speculation	EPI	GE	ID
UConcordia	6.82	27.25	3.23
UConcordia*	2.70	17.98	3.51
UTurku	37.65	23.06	15.00
UTurku*	46.60	15.60	4.76
FAUST*	41.76	14.93	12.50

Bibliography (1/3)

References

- Richárd Farkas, Veronika Vincze, György Móra, János Csirik, and György Szarvas. 2010. The CoNLL-2010 Shared Task: Learning to Detect Hedges and their Scope in Natural Language Text. In *Proceedings of the Fourteenth Conference on Computational Natural Language Learning*.
- Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshinobu Kano, and Jun'ichi Tsujii. 2009. Overview of BioNLP'09 Shared Task on Event Extraction. In *Proceedings of the BioNLP 2009 Workshop Companion Volume for Shared Task.*
- Jin-Dong Kim, Sampo Pyysalo, Tomoko Ohta, Robert Bossy, Ngan Nguyen and Jun'ichi Tsujii. 2011. Overview of BioNLP Shared Task 2011. In Proceedings of the BioNLP 2011 Workshop Companion Volume for Shared Task.

Bibliography (2/3)

References

- Halil Kilicoglu and Sabine Bergler. 2010. A High-Precision Approach to Detecting Hedges and their Scopes. In *Proceedings of the Fourteenth Conference on Computational Natural Language Learning.*
- Veronika Vincze, György Szarvas, György Móra, Tomoko Ohta and Richárd Farkas. 2011. Linguistic scope-based and biological event-based speculation and negation annotations in the BioScope and Genia Event corpora. *Journal of Biomedical Semantics*.
- Roser Morante, Vincent Van Asch and Walter Daelemans. 2010. Memory-based resolution of in-sentence scopes of hedge cues. In Proceedings of the Fourteenth Conference on Computational Natural Language Learning.

Bibliography (3/3)

References

- Jari Björne and Tapio Salakoski. 2011. Generalizing Biomedical Event Extraction. In *Proceedings of the BioNLP 2011 Workshop Companion Volume for Shared Task.*
- Halil Kilicoglu and Sabine Bergler. 2011. Adapting a General Semantic Interpretation Approach to Biological Event Extraction. In *Proceedings of the BioNLP 2011 Workshop Companion Volume for Shared Task.*
- Sebastian Riedel, David McClosky, Mihai Surdeanu, Andrew McCallum and Christopher Manning. 2011. Model Combination for Event Extraction in BioNLP 2011. In *Proceedings of the BioNLP 2011* Workshop Companion Volume for Shared Task.

For the Interested and Lawyers

Visualisations

• Annotation visualisations generated using the brat annotation/visualisation tool: http://brat.nlplab.org/

Legal

- Fractal cloud image from the Open Clipart Library
- Globe, Tank and bridge images from the Wikimedia Commons